德尔塔求根公式?
2021-02-20

“德尔塔”表示关于x的一元二次方程ax²+bx+c=0的根的判别式,其符号为“△”

其只取决于一元二次方程各项的系数:△=b²-4ac

△的值决定一元二次方程根的情况:

(1)△>0时;方程有两个不相等的实数根

(2)△=0时;方程有两个相等的实数根 此时,ax²+bx+c是一个完全平方式

(3)△<0时;方程没有实数根

扩展资料

一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。

1、公式法可以解所有的一元二次方程,公式法不能解没有实数根的方程(也就是b^2-4ac<0的方程)。

2、因式分解法,必须要把等号右边化为0。

3、配方法比较简单:首先将方程二次项系数a化为1,然后把常数项移到等号的右边,最后后在等号两边同时加上一次项系数绝对值一半的平方。

4、求根公式: x=-b±√(b^2-4ac)/2a。

一般地,式子b^2-4ac叫做一元二次方程ax^2+bx+c=0根的判别式,通常用希腊字母“Δ”表示它,即Δ=b^2-4ac。

1、当Δ>0时,方程ax^2+bx+c=0(a≠0)有两个不等的实数根;

2、当Δ=0时,方程ax^2+bx+c=0(a≠0)有两个相等的实数根;

3、当Δ<0时,方程ax^2+bx+c=0(a≠0)无实数根。

大家都在看
本站系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!本站文章版权归原作者所有,内容为作者个人观点。本站只提供参考并不构成任何投资及应用建议。本站拥有对此声明的最终解释权。